High precision scale setting

Z. Fodor

University of Wuppertal & Budapest, UCSD, FZJ

Budapest-Marseille-Wuppertal Collaboration, 1203.4469*

BNL, May 14, 2012

Outline

- Scale setting
- Plow of the gauge field
- Pure gauge
- 4 Full QCD

Scale settings and the static potential

raw output of lattice QCD: physical quantities in lattice unit \Rightarrow measure a dimensionful quantity Q $(M_{\Omega} \text{ or } f_K)$ the lattice spacing is given by $a=(aQ^{lat})/Q^{exp}$

today erros below 2% for several lattice predictions it depends crucially on the error of the lattice spacing need for a controlled/small error lattice spacing determination

not necessarily directly accesable for experiments e.g. potential popular choices are:

string tension (strictly speaking doesn't exist: string breaking) the Sommer-scale $r_x^2 \cdot dV/dr = C_x$ originally r_0 with $C_0 = 1.65$ or MILC choice r_1 with $C_1=1$

Sommer-scale, Omega mass, f_{π} and f_{K}

unfortunately, the calculations of $r_0 \& r_1$ are quite involved far more complicated than fitting the masses of particles

complications are reflected in the literature

MILC: $r_1 = 0.3117(22)$ fm (less than 1% accuracy)

RBC/UKQCD: $r_1 = 0.3333(93)(1)(2)$ fm

7% difference and 2.3 σ tension between them

another popular way is to use the Omega baryon mass the experimental value of M_{Ω} is well known more CPU demanding & sensititve to the strange quark mass mismatched strange quark mass leads to a mismatched scale

difficulties with f_{π} (chiral extrapolation) & f_{K} (mismatched m_{s})

suggestion of M. Luscher: use the Wilson flow to set the scale

Definition of the flow of the gauge field

Morningstar, Peardon PRD 69 (2004) 054501; Narayan, Neuberger, JHEP 0603 (2006) 064; Luscher JHEP 1008 (2010) 071

consider the flow:
$$B_{\mu}(t,x)$$
 for $t>0$ with $B_{\mu}(0,x)=A_{\mu}(x)$ flow equation: $\partial_t B_{\mu}=D_{\nu}G_{\mu\nu}$ with $G_{\mu\nu}=\partial_{\mu}B_{\nu}-\partial_{\nu}B_{\mu}+[B_{\mu},B_{\nu}]$

the evolution in t has a smoothing effect:

$$\partial_t B_\mu = \Delta B_\mu - \partial_\mu \partial_\nu B_\nu$$
 + non-linear terms

the first term is the same as in the heat-equation

$$B_{\mu}(t,x) = \int d^4x K_t(x-y) A_{\mu}(y) + ...$$

 K_t four dimensional heat kernel $K_t(r) = \exp(-r^2/4t)/(4\pi t)^2$ smoothing effect with $\sqrt{8t}$ smoothing range

on the lattice regularize it: $V_t(x, \mu)$ for t > 0 with $V_0(x, \mu) = U(x, \mu)$ flow equation with (Z) staples: $\partial_t V_t(x, \mu) = Z(V_t(x, \mu)) \cdot V_t(x, \mu)$

Wilson flow: technical realization

flow equation: $V_t = Z(V_t)V_t$, where Z is the staple equivalent to a series of infinitesimal stout smearing steps in our case it is integrated with 4th-order Runge-Kutta scheme

M. Luscher, JHEP 1008 (2010) 071

evolution from time t to time $t + \epsilon$ is given by $Z_i = \epsilon Z(W_i)$

$$egin{aligned} W_0 &= V_t, \ W_1 &= \exp\left(rac{1}{4}Z_0
ight)W_0, \ W_2 &= \exp\left(rac{8}{9}Z_1 - rac{17}{36}Z_0
ight)W_1, \ V_{t+\epsilon} &= \exp\left(rac{3}{4}Z_2 - rac{8}{9}Z_1 + rac{17}{36}Z_0
ight)W_2 \end{aligned}$$

Wilson flow and the coupling

M. Luscher, JHEP 1008 (2010) 071

as a representative example $E=G_{\mu\nu}^aG_{\mu\nu}^a/4$ is considered lattice: E(t) can be defined by the (1-plaquette) or clover terms they only differ by discretization effects lattice: we expect $\langle E \rangle \propto (1-\text{plaquette}) \cdot t^2$ behavior

very important results about the renormalization of the Wilson flow

calculation of $\langle E \rangle$ up to $\alpha_s^2(q)$ with $q = (8t)^{-1/2}$ (result has been obtained in the continuum \overline{MS} scheme)

$$\langle E \rangle = \frac{3}{4\pi t^2} \alpha(q) \{ 1 + k_1 \alpha(q) + \mathcal{O}(\alpha^2) \}, \quad k_1 = 1.0978 + 0.0075 N_f$$

above the cut-off (small t): lattice and continuum quite different

Lattice study of the Wilson flow (pure gauge)

the perturbation QCD expansion works for small $t \ (\ll 1 \text{ fm})$ for large t one uses numerical lattice simulations SU(3) pure gauge theory with lattice spacing a=0.05 fm

statistical error: smaller than the thickness of the (linear) line lattice: expect (1-plaquette) $\cdot t^2$ behavior for small t perturbation theory is given by the band (uncertainty on Λ)

Wilson flow for scale setting: quenched

 $\langle E \rangle$ is physical: approaches its continuum limit with a^2 test it with the reference scale t_0 given by

$$\left\{t^2\langle E\rangle\right\}_{t=t_0}=0.3$$

scaling violation increases toward smaller reference scales for which the smoothing range is only 2-3 times the lattice spacing

Gauge flow for dynamical fermions & w₀

one can determine the gauge flow also for the dynamical case use the Wilson flow or the gauge flow defined by the action

 $t^2\langle E(t)\rangle$ incorporates informations from all $t>\mathcal{O}(1/\sqrt{t})$ its derivative (almost constant) mostly from scales around $\mathcal{O}(1/\sqrt{t})$ advantage: flow at small $t\sim a^2$ is a subject of cutoff effects

observed "linearity" for $t^2\langle E\rangle$ one can extract it by $t \cdot dt^2\langle E\rangle/dt$ instead $t^2\langle E\rangle=0.3$ (M. Luscher) $t \cdot dt^2\langle E\rangle/dt=0.3$ (w_0 scale)

a \rightarrow 0: non-universal part shrinks w_0 has less cutoff effects than t_0

Continuum limit is the same

different definitions should have the same continuum limit one can use the Wilson flow or the Symanzik flow: M_{π} =135 MeV

original definition of Luscher has the largest cut-off effect various definitions of w_0 have tiny ones (a few % or less) (statistical errors are neglible, good for scale setting)

Finite volume effects

how sensitive is w_0 to the size of the system only for boxes <2 fm: $M_{\pi}L \approx 1.35$ instead of 4 \implies finite volume effects are tiny, far below the 1% level

robust and stable method for determining the scale

$a \rightarrow 0$: Wilson & staggered w_0 Budapest-Marseille-Wuppertal Collaboration, 1203.4469*

the physical scale was obtained by the Omega baryon mass our final result is the Wilson result (staggered is a cross check) (no rooting \Longrightarrow theoretically cleaner)

$$w_0$$
=0.1755(18)(04) fm

error (dominantly statistical) is 1% (and comes not from the gauge flow itself, but from M_{\odot})

$a \rightarrow 0$: Wilson & staggered w_0 Budapest-Marseille-Wuppertal Collaboration, 1203.4469*

the physical scale was obtained by the Omega baryon mass our final result is the Wilson result (staggered is a cross check) (no rooting \Longrightarrow theoretically cleaner)

$$w_0$$
=0.1755(18)(04) fm

error (dominantly statistical) is 1% (and comes not from the gauge flow itself, but from M_{Ω})

Scale off the physical point

usually runs aren't at physical masses: what is the scale there measure M_{π} , M_{K} and w_{0} : $x=w_{0}^{2}M_{\pi}^{2}$ and $y=w_{0}^{2}(M_{K}^{2}-M_{\pi}^{2}/2)$

$$w_0$$
=0.18515-0.5885 x^2 -0.0497y-0.11 xy -1.476 x^3 ±18·10⁻³±4·10⁻³[fm]

change M_{π} from 135 to 350 MeV 4% change in the lattice spacing (same size as cutoff effects) change m_s by 10% 0.5% change in the lattice spacing error is 1% in the continuum limit

Error analysis: 2HEX data set

histogram method to give statistical and systematic errors 64 possible results (m_q interpolation, M_{π} cut, $a\rightarrow 0$, fit range, scale)

orange/gray bands: systematic/full error; red line: result

interpolation	M_{π} -cut	а→0	fit range	scale
15%	40%	55%	55%	45%

Outline

- Scale setting
- 2 Flow of the gauge field
- Pure gauge
- 4 Full QCD

